Cyclic groups

Dr.E.Geetha Assistant Professor of Mathematics SCSVMV

Aim

- Cyclic groups
- Order of Cyclic groups
- Generators of cyclic groups
- Euler Phi function

Prerequisities

- Group and its order
- Subgroup

Learning outcome

Students can be able to

- > Identify cyclic groups and its Order
- Find the Generators of cyclic groups
- With the use of Euler Phi function, they came know to find the generators of cyclic groups.

Definition: Cyclic groups

- A cyclic group is a group which can be generated by one of its elements.
- That is, for some a in G,

 $G = \{a^n \mid n \text{ is an element of } Z\}$

Or, in addition notation, G = { na | n is an element of Z }

This element a (Which need not be unique) is called a generator of G.

Alternatively, we may write $G = \langle a \rangle$.

Example:-

Let G={1, -1, i, -i}, then {G,x} be a group, where e=1 is the multiplicative *identity* element.
Clearly i and -i are the two generators of G,

Since $(i)^{1}=i$, $(i)^{2}=-1$, $(i)^{3}=-i$, and $(i)^{4}=1$. $(-i)^{1}=-i$, $(-i)^{2}=-1$, $(-i)^{3}=i$, and $(-i)^{4}=1$

Hence {G,x} is a *cyclic group*.

(ii) Let $G=\{1, w, w^2\}$, then $\{G,x\}$ be a group, where $w^3=1$ and e=1 is the multiplicative **identity** element.

Clearly w and w² are the two generators of G Since $(w)^1=w$, $(w)^2=w^2$, $(w)^3=1$ $(w^2)^1=w^2$, $(w^2)^2=w^4=w$ $(w^2)^3=w^6=1$ Hence {G,x} is a *cyclic group*. (iii) Let $G=\{a,a^2, a^3,...,a^n\}$, then $\{G,x\}$ be a group, where $a^n=e$, and 'e' is multiplicative identity element.

Clearly a is the only generator of G

Since $(a)^1=a$, $(a)^2=a^2$, $(a)^3=a^3$,(a)^n=a^n=e.

Hence {G,x} is a cyclic group.

Definition: Order of a cyclic group

If a generator g has order n, $G = \langle g \rangle$ is cyclic of order n. If a generator g has infinite order, $G = \langle g \rangle$ is infinite cyclic.

Example. (The integers and the integers mod n are cyclic) Show that \mathbb{Z} and \mathbb{Z}_n for n > 0 are cyclic.

 \mathbb{Z} is an infinite cyclic group, because every element is a multiple of 1 (or of -1). For instance, $117 = 117 \cdot 1$. (Remember that "117 · 1" is really shorthand for $1 + 1 + \cdots + 1 - 1$ added to itself 117 times.) In fact, it is the only infinite cyclic group up to isomorphism. Notice that a cyclic group can have more than one generator. If n is a positive integer, \mathbb{Z}_n is a cyclic group of order n generated by 1. For example, 1 generates \mathbb{Z}_7 , since

$\begin{array}{c} 1+1=2\\ 1+1+1=3\\ 1+1+1+1=4\\ 1+1+1+1+1=5\\ 1+1+1+1+1+1=6\\ 1+1+1+1+1+1=0\end{array}$

In other words, if you add 1 to itself repeatedly, you eventually cycle back to 0.

Notice that 3 also generates \mathbb{Z}_7 :

- 3 + 3 = 6
- 3 + 3 + 3 = 2
- 3 + 3 + 3 + 3 = 5
- 3 + 3 + 3 + 3 + 3 = 1
- 3 + 3 + 3 + 3 + 3 + 3 = 4
- 3 + 3 + 3 + 3 + 3 + 3 + 3 = 0

The "same" group can be written using multiplicative notation this way:

$$\mathbb{Z}_7 = \{1, a, a^2, a^3, a^4, a^5, a^6\}.$$

In this form, *a* is a generator of \mathbb{Z}_7 . It turns out that in $\mathbb{Z}_7 = \{0, 1, 2, 3, 4, 5, 6\}$, every nonzero element generates the group. On the other hand, in $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$, only 1 and 5 generate. \square **Lemma.** Let $G = \langle g \rangle$ be a finite cyclic group, where g has order n. Then the powers $\{1, g, \ldots, g^{n-1}\}$ are distinct.

Proof. Since g has order $n, g, g^2, \ldots g^{n-1}$ are all different from 1. Now I'll show that the powers $\{1, g, \ldots, g^{n-1}\}$ are distinct. Suppose $g^i = g^j$ where $0 \le j < i < n$. Then 0 < i - j < n and $g^{i-j} = 1$, contrary to the preceding observation. Therefore, the powers $\{1, g, \ldots, g^{n-1}\}$ are distinct. \square

Lemma. Let $G = \langle g \rangle$ be infinite cyclic. If m and n are integers and $m \neq n$, then $g^m \neq g^n$.

Proof. One of m, n is larger — suppose without loss of generality that m > n. I want to show that $g^m \neq g^n$; suppose this is false, so $g^m = g^n$. Then $g^{m-n} = 1$, so g has finite order. This contradicts the fact that a generator of an infinite cyclic group has infinite order. Therefore, $g^m \neq g^n$. \square

Lemma. Let G be a group, and let $g \in G$ have order m. Then $g^n = 1$ if and only if m divides n.

Proof. If m divides n, then n = mq for some q, so $g^n = (g^m)^q = 1$. Conversely, suppose that $g^n = 1$. By the Division Algorithm,

$$n = mq + r$$
 where $0 \le r < m$.

Hence,

$$g^n = g^{mq+r} = (g^m)^q g^r$$
 so $1 = g^r$.

Since m is the smallest positive power of g which equals 1, and since r < m, this is only possible if r = 0. Therefore, n = qm, which means that m divides n. \Box

Example. (The order of an element) Suppose an element g in a group G satisfies $g^{45} = 1$. What are the possible values for the order of g?

The order of g must be a divisor of 45. Thus, the order could be

1, 3, 5, 9, 15, or 45.

And the order is certainly not (say) 7, since 7 doesn't divide 45. \Box

Proposition. Let $G = \langle g \rangle$ be a cyclic group of order n, and let m < n. Then g^m has order $\frac{n}{(m,n)}$. **Remark.** Note that the order of g^m (the element) is the same as the order of $\langle g^m \rangle$ (the subgroup).

Proof. Since (m, n) divides m, it follows that $\frac{m}{(m, n)}$ is an integer. Therefore, n divides $\frac{mn}{(m, n)}$, and by the

$$(g^m)^{\frac{n}{(m,n)}} = 1.$$

Now suppose that $(g^m)^k = 1$. By the preceding lemma, n divides mk, so

$$\frac{n}{(m,n)} \mid k \cdot \frac{m}{(m,n)}.$$

However, $\left(\frac{n}{(m,n)}, \frac{m}{(m,n)}\right) = 1$, so $\frac{n}{(m,n)}$ divides k. Thus, $\frac{n}{(m,n)}$ divides any power of g^m which is 1, so it is the order of g^m . \Box

In terms of \mathbb{Z}_n , this result says that $m \in \mathbb{Z}_n$ has order $\frac{n}{(m,n)}$.

last lemma,

Example. (Finding the order of an element) Find the order of the element a^{32} in the cyclic group $G = \{1, a, a^2, \dots a^{37}\}$. (Thus, G is cyclic of order 38 with generator a.)

In the notation of the Proposition, n = 38 and m = 32. Since (38, 32) = 2, it follows that a^{32} has order $\frac{38}{2} = 19$. \Box

Corollary. The generators of $\mathbb{Z}_n = \{0, 1, 2, ..., n-1\}$ are the elements of $\{0, 1, 2, ..., n-1\}$ which are relatively prime to n.

Proof. If $m \in \{0, 1, 2, ..., n - 1\}$ is a generator, its order is n. The Proposition says its order is $\frac{n}{(m, n)}$. Therefore, $n = \frac{n}{(m, n)}$, so (m, n) = 1. Conversely, if (m, n) = 1, then the order of m is

$$\frac{n}{(m,n)} = \frac{n}{1} = n.$$

Therefore, m is a generator of \mathbb{Z}_n . \Box

Example. (Finding the generators of a cyclic group) List the generators of:

(a) \mathbb{Z}_{12} .

(b) \mathbb{Z}_p , where p is prime.

(a) The generators of \mathbb{Z}_{12} are 1, 5, 7, and 11. These are the elements of $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$ which are relatively prime to 12. \Box

(b) If p is prime, the generators of \mathbb{Z}_p are $1, 2, \ldots, p-1$. \square

Example. (a) List the generators of \mathbb{Z}_9 .

- (b) List the elements of the subgroup $\langle 3 \rangle$ of \mathbb{Z}_{27} .
- (c) List the generators of the subgroup $\langle 3 \rangle$ of \mathbb{Z}_{27} .
- (a) The generators are the elements relatively prime to 9, namely 1, 2, 4, 5, 7, and 8. □
- (b)

$$\langle 3 \rangle = \{0, 3, 6, 9, 12, 15, 18, 21, 24\}.$$

(c) $\langle 3 \rangle$ is cyclic of order 9, so its generators are the elements corresponding to the generators 1, 2, 4, 5, 7, and 8 of \mathbb{Z}_9 . Since $27 = 3 \cdot 9$, I can just multiply these generators by 3.

Thus, the generators of $\langle 3 \rangle$ are 3, 6, 12, 15, 21, and 24. \Box

Properties of Cyclic groups

- (i) Every cyclic group is abelian
- (ii) If a is a generator of a cyclic group $\{G, *\}$, then a^{-1} is also a generator of $\{G, *\}$.

Proof of (i)

Let {G,*} be a cyclic group with 'a' in G is a generator. We have to prove G is abelian, i.e to prove b*c=c*b, for all b,c in G

Since b lies in G and 'a' is generator of G, therefore $b=a^{m}---(1)$, for some integer m. Since c lies in G and 'a' is generator of G, therefore $c=a^{n}----(2)$, for some integer n.

Now L.H.S=b*c $=a^{m*}a^{n}$ =a*a*a*.....*a*a*a.....*a =a^{m+n} =a^{n+m} (since n,m are integers, therefore n+m=m+n) =aⁿ*a^m =c*b L.H.S=R.H.S Hence the proof.

Proof of (ii)

Let 'a' is generator of a cyclic group {G,*}

We have to prove 'a⁻¹' is also a generator of $\{G, *\}$

Let 'b' any element in G and 'a' is generator of G, therefore $b=a^m$, for some integer m. i.e $b=(a^{-1})^{-m}$ for some integer -m

Hence a^{-1} is also a generator of G.

Properties of cyclic groups

• Criterion for
$$a^i = a^j$$

For $|\mathbf{a}| = \mathbf{n}_{\mathbf{a}}a^{i} = a^{j}$ Iff n divides (i – j)

(alternatively, if $i = j \mod n$)

Or in addition notation, ia = ja iff $i = j \mod n$

Corollaries:

1. $|a| = |\langle a \rangle|$, that is, the order of an element is equal to the order of the cyclic group generated by that element.

2. If
$$a^k = e$$
 then the order of a divides k

▶ For |a| = n,

$$< a^{k} > = < a^{\gcd(n,k)} > and | a^{k} | = n / \gcd(n,k)$$

Corollary:

1. Let |a| = n. then $a^i \ge a^j = a^j \ge a^j = a^j = a^j \ge a^j = a^j =$

2. In any cyclic group $G = \langle a \rangle$ with order n, the generators are a^k for each k relatively prime to n.

Fundamental theorem of Cyclic groups

- Let $G = \langle a \rangle$ be a cyclic group of order n. Then
- 1. Every subgroup of a cyclic group is also cyclic.
- 2. The order of each subgroup divides the order of the group.
- 3. For each divisor k of n, there is exactly one subgroup of order k, that is $\langle a^{n/k} \rangle$

Number of elements of each order in a cyclic group

> Let G be a cyclic group of order n.

Then, if d is a positive divisor of n, then the number of elements of order d is $\varphi(d)where\varphi$

is the Euler Phi function.

 $\varphi(d)\,$ is defined as the number of positive integers less than d and relatively prime to d

The First few values $\varphi(d)$ are:

